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An expression for the Green’s function (GF) of Body-Centered Cubic (BCC) lattice
is evaluated analytically and numerically for a single impurity lattice. The density of
states (DOS), phase shift, and scattering cross section are expressed in terms of complete
elliptic integrals of the first kind.
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1. INTRODUCTION

Green’s function for the cubic lattices has been the object of an extensive
study for many years. This method has proved to be very powerful for quantitative
studies of a variety of problems in solid-state physics. Extensive investigations
have been made to evaluate analytically as well as numerically for different crystal
structures (Economou, 1983).

The lattice Green’s function is defined as

G(E) = Ä

(2π )d

∫
1BZ

F(Ek)

E − E(Ek)
dEk (1.1)

E(Ek) is a dispersion relation,F(Ek) is an appropriate function,Ä is the volume of
the crystal in real space,d is the dimension, and 1BZ denotes that the integration
must be restricted to the first Brillouin zone (Economou, 1983; Watson, 1939).

Many quantities of interest in solid-state physics can be expressed in terms of
lattice Green’s function (LGF), for example, statistical model of ferromagnetism
such as Ising model (Brout, 1960), Heisenberg model (Dalton and Wood, 1967),
spherical model (Tax, 1955), lattice dynamics (Dederichset al., 1980), random
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walk theory (Hughes, 1986; Montroll, 1956), and band structure (Koster and Slater,
1954; Liet al., 1989).

In this work we report on the lattice Green’s function. The paper is organized
as follows: Section 2 is devoted to the general definition of the diagonal lattice
Green’s function and its form inside and outside the band for the BCC lattice in
terms of complete elliptic integrals of the first kind. This section also contains the
formulae for the density of states, phase shift, and scattering cross section for a
point defect case. In Section 3 we present the results and discussion.

2. THE BODY-CENTERED CUBIC LATTICE GREEN’S FUNCTION

The diagonal Green’s function for the BCC lattice with nearest neighbor
interaction is defined as (Inoue, 1975; Joyce, 1971a,b; Katsura and Horiguchi,
1971; Mano, 1975; Morita, 1971; Morita and Horiguci, 1971)

G0(L , L; E)

= 1

N(2π )d

∫ ∫ ∫
1BZ

dEk
E − ε − 8V cos(kx(a/2)) cos(ky(a/2)) cos(kz(a/2))

,

(2.1)

whereÄ/N is the volume of the unit cell of the lattice,V is the potential, that is,
the hopping integral in the tight-binding approximation.

Or

G0(L , L; E) = 1

π3

∫ π

0

∫ π

0

∫ π

0

dkx dky dkz

E − cos(kx) cos(ky) cos(kz)
, |E| > 1. (2.2)

Integrating the above equation and using the method of analytic continuation
(Joyce, 1971a), the diagonal Green’s function outside the band will have the form

G0(L , L; E) = 4

π2E
K 2(k), |E| > 1 (2.3)

where

k2 = 1

2

[
1− (1− E−2)1/2

]
. (2.4)

Green’s function outside and inside the band can be written as (Sakaji, 1994)
(mathematical manipulations are given in Appendix).

G0(L , L; E) =
{

4
π2E K 2(k), |E| > 1
4
π2 K (k+)K (k−)+ 2i

π2 [K 2(k+)− K 2(k−)], |E| < 1

}
. (2.5)

Therefore, the density of states is

DOS0(E) = 2

π3
[K 2(k+)− K 2(k−)], |E| < 1, (2.6)
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where

k2
± =

[
1

2
± (1− E2)1/2

]
. (2.7)

K (k±) is the complete elliptic integral of the first kind.
Consider the case of a tight-binding Hamiltonian whose perfect periodicity

is destroyed due to the presence of a point defect at theL site. This situation can
be thought of physically as arising by substituting the host atom at theL site by a
foreign atom (Economou, 1983) having a level lyingε′ higher than the common
level of the host atoms (L).

Thus our diagonal Greens function of the BCC lattice for the single impurity
case can be written as (Doniach and Sondheimer, 1974; Sakaji, 1994)

G(L , L; E)

=


4K 2(k)
π2E−4ε′K 2(k) , |E| > 1

4π2K (k+)K (k−)−8ε′[K (k+)K (k−)]2−4ε′[K 4(k+)+K 4(k−)]+2π2i [K 2(k+)−K 2(k−)]
[π2−4ε′K (k+)K (k−)]2+4ε′2[K 2(k+)−K 2(k−)]2 , |E| < 1,

(2.8)

and the density of states can be written as (Doniach and Sondheimer, 1974; Sakaji,
1994)

DOS(E) =
{

2π [K 2(k+)− K 2(k−)]

[π2− 4ε′K (k+)− K (k−)]2+ 4ε′2[K 2(k+)− K 2(k−)]2

}
. (2.9)

The S-wave phase shift,δ0, is defined as (Doniach and Sondheimer, 1974)

tanδ0 = πDOS0(E)
1
ε′ − ReG0(E)

. (2.10)

Here ReG0(E) refers to the real part the Green’s function inside the band. After
some mathematical manipulations, we obtain (Doniach and Sondheimer, 1974;
Sakaji, 1994)

tanδ0 = 2
K 2(k+)− K 2(k−)
π2

ε′ − 4K (k+)K (k−)
. (2.11)

The cross section,σ , is defined as (Doniach and Sondheimer, 1974)

σ = 4π

P2

π2[DOS0(E)]2[
ReG0(E)− 1

ε′
]2+ π2[DOS0(E)]2

. (2.12)

HereP refers to the electron momentum.
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Therefore, the cross section becomes

σ = 4π

P2

[K 2(k+)− K 2(k−)]2[
2K (k+)K (k−)− π2

2ε′
]2+ [K 2(k+)− K 2(k−)]2

. (2.13)

3. RESULTS AND DISCUSSION

Our results for the body-centered cubic lattice are shown in Figs. 1–8.
Figures 1 and 2 show real and imaginary parts of Green’s function for the pure
lattice. The figures show exponential falloff behavior. Figure 3 shows the den-
sity of states for the pure lattice. The density of states has the same behavior as
above apart from a constant. The figure shows that the function is symmetric (even
function).

Figure 4 shows the density of states for the BCC lattice with single impurity
for different potential strengthsε′ (−0.7,−0.3, 0.0, 0.3, and 0.7). Forε′ = 0.0
it falls off exponentially. The peak value varies with the potential strengths and
reaches its maximum atε′ = 0.3. We see that the divergence of Green’s function
and density of states is removed by adding impurities. A different behavior is found
in the case of the Glasser lattice (Sakajiet al., in press). Figure 5 shows the density
of states for the body-centered cubic lattice (DOS) in three dimensions with one
axis representing potential strengthsε′ varying between−1 and 1 (arbitrary units)
whereas the second axis is energy scale varying between−1 and 1 as indicated in
the formalism.

The phase shift,δ0, is defined as the shift in the phase of the wave function
due to the presence of the impurity potential. Figure 6 displaysδ0 for the body-
centered cubic lattice with single impurity for different potential strengthsε′ (−0.7,
−0.3, 0.0, 0.3, and 0.7). Forε′ = 0.0,δ0 vanishes as potential is turned off (perfect

Fig. 1. Real part Green’s function for the perfect BCC lattice.
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Fig. 2. Imaginary part Green’s function for the perfect BCC lattice.

lattice). The phase shift is always negative for all negative potential strengthsε′

and forε′ = 0.57. In the range betweenε′ = 0.00 andε′ = 0.17,δ0 is continuous
and positive. Forε′ enclosed between 0.17 and 0.20 a singular behavior occurs at
E = 0.00. In the range whereε′ varies between 0.20 and 0.57 we have discontinuity
as shown in Fig. 6 forε′ = 0.30. Two regions around the discontinuity point
characterize the phase shift: a right-hand region in whichδ0 is positive and its
value decreases asε′ increases and a left-hand region in whichδ0 is negative and
its value increases asε′ decreases. That is the discontinuity point moves to the

Fig. 3. The density of states (DOS) for the perfect BCC lattice.
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Fig. 4. The density of states (DOS) for the BCC latt-
ice with single impurity for different potential strengths
ε′ (−0.7,−0.3, 0.0, 0.3, and 0.7).

right asε′ increases. A similar behavior occurs for negativeE. Figure 7 shows the
phase shift,δ0, in three dimensions for the BCC lattice with single impurity for
different potential strengthsε′ varying between−1 and 1 (arbitrary units).

The cross section,σ , is defined as the area an impurity atom presents to
the incident electron. Figure 8 shows the cross section for single substitutional
impurity with different potential strengths,ε′. The peak value varies with the
potential strength and reaches its maximum atε′ = 0.30 and decreases in the
range betweenε′ < 0.20 andε′ > 0.30. The values are all positive sinceσ can be

Fig. 5. Three-dimensional density of states (DOS) for the BCC lattice
with single impurity for different potential strengthsε′ varying between
−1 and 1 (arbitrary units).



P1: GCQ

International Journal of Theoretical Physics [ijtp] pp464-ijtp-372240 May 30, 2002 10:31 Style file version May 30th, 2002

Lattice Green’s Function for the Body-Centered Cubic Lattice 979

Fig. 6. The phase shift,δ0, for the BCC lattice
with single impurity for different potential strengths
ε′ (−0.7,−0.3, 0.0, 0.3, and 0.7).

viewed as a sort of probability. It is related to some physical quantities such as the
conductivity in metals. Figure 9 shows the cross section,σ , in three dimensions
for the BCC lattice with single impurity for different potential strengthsε′ varying
between−1 and 1 (arbitrary units).

The Fermi energy is defined as the energy of highest occupied level and
is calculated through the equation

∫ Ef

−∞ DOS(E) dE= n = number of particles,
wheren represents the number of electrons per lattice (n = 2), and E f is the
Fermi energy.

The Fermi energy for a single substitutional impurity with different potential
strengths are calculated, and the results in arbitrary units are given in Table I
(Sakaji, 1974).

Fig. 7. The phase shift,δ0, in three dimensions for the
BCC lattice with single impurity for different potential
strengthsε′ varying between−1 and 1 (arbitrary units).
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Fig. 8. The cross section,σ , for the BCC lattice with single impurity for different potential
strengthsε′ (−0.7,−0.3, 0.0, 0.3, and 0.7).

Fig. 9. The cross section,σ , in three dimensions for the BCC lattice
with single impurity for different potential strengthsε′ varying between
−1 and 1 (arbitrary units).
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Table I. The Fermi Energy for a Single Substitutional
Impurity With Different Potential Strength

Potential strength Fermi energy

0 2.00
0.1 1.91
0.3 1.67
0.4 1.43

APPENDIX: DERIVATION OF GREEN’S FUNCTION FOR THE
BODY-CENTERED CUBIC LATTICE INSIDE THE BAND

In this Appendix we devoted to derive expression for Green’s function inside
the band in terms of complete elliptic integral of the first kind.

Green’s function for the body-centered cubic lattice outside the band is given
by (Inoue, 1975; Joyce, 1971a,b; Morita and Horiguci, 1971)

G0(E) = 4K 2(k)

π2E
, (A1)

where

k =
√

1

2

(
1−

√
1− E−2

)
, E > 1.

The complete elliptic integral of the first kind is expressed as

K (k) = π

2
2F1

(
1

2
,

1

2
; 1;k2

)
, (A2)

where2F1( 1
2, 1

2; 1;k2) is the Gauss hypergeometric function.
Kummer’s identity is defined as (Sakajiet al., in press)

2F1

(
1

4
,

1

4
; 1; E−2

)
= 2F1

[
1

2
,

1

2
; 1;

1

2

(
1−

√
1− E−2

)]
. (A3)

Substituting (A3) in (A1) we have

G0(E) =
[

2F1
(

1
4, 1

4; 1; E−2
)]2

E
. (A4)

Using the following transformations (Gradshteyn and Ryzhik, 1965)

2F1

(
1

4
,

1

4
; 1; E−2

)
= E1/2

[[
0
(

1
4

)]2
2π3/2 2F1

(
1

4
,

1

4
;

1

2
; 1− E2

)

+ 2
π1/2
√

E2− 1[
0
(

1
4

)]2 2F1

(
3

4
,

3

4
;

3

2
; 1− E2

)]
, (A5)
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with[
0
(

1
4

)]2
π3/2 2F1

(
1

4
,

1

4
;

1

2
; 1− E2

)
= 2F1

[
1

2
,

1

2
; 1;

1

2

(
1+

√
1− E2

)]+ 2F1

[
1

2
,

1

2
; 1;

1

2

(
1−

√
1− E2

)]
, (A6)

and

4π1/2
√

1− E2(
0
(

1
4

))2 2F1

(
3

4
,

3

4
;

3

2
; 1− E2

)

= 2F1

[
1

2
,

1

2
; 1;

1

2

(
1−

√
1− E2

)]− 2F1

[
1

2
,

1

2
; 1;

1

2

(
1+

√
1− E2

)]
. (A7)

Substituting (A6) and (A7) in (A5) then we obtain

2F1

(
1

4
,

1

4
; 1; E−2

)
= 1

2
E1/2

{
(1+ i )2F1

[
1

2
,

1

2
; 1;

1

2

(
1+

√
1− E2

)]
+ (1− i )2F1

[
1

2
,

1

2
; 1;

1

2

(
1−

√
1− E2

)]}
, (A8)

or in terms of complete elliptic integral of the first kind

2F1

(
1

4
,

1

4
; 1; E−2

)
= E1/2

π
[(1+ i )K (k+)+ (1− i )K (k−)], (A9)

where

k± = 1

2

(
1±

√
1− E2

)
.

Substituting (A9) in (A4) then we obtain

G0(E) = 1

π2
[(1+ i )K (k+)+ (1− i )K (k−)]2, (A10)

then

G0(E) = 2

π2
[2K (k+)K (k−)+ i (K 2(k+)− K 2(k−))]. (A11)

If we have a single impurity then Green’s function is defined as

G(L,E) = G0(E)

1− ε′G0(E)
. (A12)
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After some mathematical manipulation Eq. (A12) becomes

G(L,E) = {[4π2− 2ε′K (k+)K (k−)]K (k+)K (k−)+ i 2π2[K 2(k+)

− K 2(k−)] − 4ε′[K 4(k+)+ K 4(k−)]/{[π2− 4ε′K (k+)K (k−)]2

+ 4ε′2[K 2(k+)− K 2(k−)]2}. (A13)

Thus, the S-phase shift, and scattering cross section can be evaluated in terms
of complete elliptic integrals of the first kind as shown in the text.
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